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Abstract
Open quantum systems are embedded in the continuum of scattering
wavefunctions and are naturally described by non-Hermitian Hamilton
operators. In the complex energy plane, exceptional points appear at which
two (or more) eigenvalues of the Hamilton operator coalesce. Although they
are a countable set of single points in the complex energy plane and therefore
of measure zero, they determine decisively the dynamics of open quantum
systems. A powerful method for the description of open quantum systems is
the Feshbach projection operator formalism. It is used in the present paper as
a basic tool for the study of exceptional points and of the role they play for the
dynamics of open quantum systems. Among others, the topological structure
of the exceptional points, the rigidity of the phases of the eigenfunctions in
their vicinity, the enhancement of observable values due to the reduced phase
rigidity and the appearance of phase transitions are considered. The results are
compared with existing experimental data on microwave cavities. In the last
section, some questions being still unsolved, are considered.

PACS numbers: 03.65.Vf, 03.65.Ta, 03.65.Yz, 05.60.Gg

1. Introduction

The existence of exceptional points has been discussed in mathematical literature for more
than 40 years, see e.g. the textbook [1]. At these points, k eigenvalues of a non-Hermitian
operator coalesce, and the corresponding eigenvectors are linearly dependent. Simultaneously,
k − 1 associated vectors appear which form, together with the single eigenvector, a Jordan
block. These k vectors span the so-called k-dimensional algebraic eigenspace so that the total
space dimension is preserved at the exceptional point [1, 2].

The Hamilton operator that describes effectively the properties of an open quantum
system is non-Hermitian. Its complex eigenvalues provide not only the positions of the
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resonance states but also their (finite) lifetimes. The general formalism for the description
of open quantum systems has been formulated by Feshbach [3] already more than 40 years
ago. Nevertheless, spectroscopic studies on concrete nuclei have been performed, in the past,
almost exclusively either by using statistical approximations (at high-level density) or on the
basis of the R matrix theory (when the resonance states are well separated). Spectroscopic
information on the positions and lifetimes of narrow resonance states is obtained usually by
continuing the S matrix into the complex energy plane and considering its poles.

In past years, high-resolution experiments became possible in different fields of physics.
The obtained results turned out to be a challenge for the theory. They call for a theoretical
description which is more precise than the standard one. Particularly in the regime of
overlapping resonances, the non-Hermiticity of the Hamilton operator has to be considered.
Also the influence of exceptional points should be studied in detail.

In the physical literature, the notation exceptional point is seldom used. Instead, other
notations can be found. Mostly, the exceptional points are identified with double poles of
the S matrix (although this identification holds only approximately, since the poles of the S
matrix are just an auxiliary means for the extraction of spectroscopic information used in
standard theory with Hermitian Hamilton operator, see [4]). Double poles of the S matrix are
considered, quite generally, in scattering theory [5]. They are studied in some detail in, e.g.,
[6, 7]. Numerical calculations for atoms in a laser field are provided in [8, 9]. In other studies
on atoms, the notation hidden crossings is used [10]. Due to their relation to the avoided level
crossing phenomenon in the continuum, the exceptional points are called often crossing points
in the continuum meaning that the eigenvalue trajectories, traced as a function of a parameter,
cross at these points [11]. The parameter values at which the crossing occurs are called critical
values. The physical meaning of the crossing points arises from the fact that they are branch
points in the continuum at which level repulsion (and small changes of the widths) passes into
widths bifurcation (accompanied by level clustering) and vice versa [11]. The exceptional
points determine the spectroscopic properties of realistic open quantum systems in the regime
of overlapping resonances, i.e. of almost all open quantum systems under realistic conditions.
This statement has been confirmed by numerical studies on atoms [8, 9] and quantum dots,
e.g. [12–15]. The notation exceptional point has been used now also in the study of atomic
spectra [16].

The significance of exceptional points for physical processes expresses itself by their
topological structure. It is considered in [17, 18] and studied experimentally on a quantum
billiard [19, 20]. The geometric phase appearing by encircling an exceptional point differs
from the Berry phase. It does not pass into the Berry phase even in the limit of vanishing
coupling to the continuum [13].

Another interesting question is the structure of an exceptional point with three or more
coalescent eigenvalues. The limiting case N → ∞ is considered about 10 years ago
[17, 21]. In these papers, the relation between an N-fold exceptional point and a phase
transition is discussed. The results for numerical calculations on a realistic system (quantum
dot) where such a situation is almost realized, are provided in [15].

An N-fold exceptional point may occur when N −1 twofold exceptional points coalesce or
when, for some symmetry involved in the system, some of the states remain unaffected by the
eigenvalue crossing. The last situation is studied in an open quantum dot with three resonance
states [13]. In this context, the experimental data obtained for the Berry phase in a closed
quantum billiard are interesting where triple diabolic points with a certain internal symmetry
are observed [22]. The problem of multiple exceptional points is also discussed during the 6th
International Workshop on Pseudo Hermitian Hamiltonians in Quantum Physics [23–26].
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In the following, the role of exceptional points in the dynamics of open quantum systems
will be reviewed. Our considerations are based on the results of analytical as well as numerical
studies by using both toy models and models describing realistic systems. Most calculations
are performed by using the Feshbach projection operator (FPO) formalism. The aim of the
review is to discuss the different results from a common point of view in order to receive a
better understanding of the underlying physics and to formulate unsolved problems as clear
as possible.

In section 2, the FPO formalism is sketched with special consideration of the phases
of the wavefunctions of the resonance states. Geometric phases of diabolic and exceptional
points are considered in section 3 while the relation of exceptional points to phase transitions
is discussed in section 4. In section 5, some numerical examples are mentioned which show
the influence of exceptional points in realistic systems. Some conclusions are drawn in the
last section including reference to some yet unsolved problems.

2. Exceptional points in the framework of the Feshbach projection operator (FPO)
formalism

2.1. Eigenvalues and eigenfunctions of the non-Hermitian Hamilton operator Heff

In the present paper, the FPO technique [3] will be used in order to describe the properties
of open quantum systems. In this formalism, the spectroscopic properties follow from the
complex eigenvalues and eigenfunctions of a non-Hermitian symmetrical Hamilton operator.
The condition for the appearance of exceptional points can be formulated explicitly.

In the FPO formalism, the full function space is divided into two subspaces: the Q subspace
contains all wavefunctions that are localized inside the system and vanish exponentially
outside while the wavefunctions of the P subspace are extended up to infinity and vanish
inside the system, see [11]. It is P + Q = 1. In this formalism, two Hamilton operators
characterize the system. The first one, H, is Hermitian. It describes the scattering in the whole
function space,

(H − E)�E
C = 0, (1)

consisting of the two subspaces: the subspace of discrete states of the considered (closed)
system (described by the Hermitian operator HB) and of the subspace of scattering states
(continuum described by the Hermitian operator HC) into which the system is embedded.
In solving (1) in the whole function space by using the FPO technique [3], the effective
non-Hermitian Hamilton operator

Heff = HB +
∑
C

VBC

1

E+ − HC

VCB (2)

appears which contains HB as well as an additional symmetrical non-Hermitian term that
describes the coupling of the discrete states via the common environment of scattering
wavefunctions. Here VBC, VCB stand for the coupling matrix elements between the eigenstates
of HB and the environment [11] that may consist of different continua C. The operator Heff is
non-Hermitian,

(Heff − zλ)φλ = 0, (3)

its eigenvalues zλ and eigenfunctions φλ are complex. The eigenvalues provide not only the
energies Eλ of the resonance states but also their widths �λ (inverse lifetimes). The Hamilton
operator Heff describes the spectroscopic properties of the system localized in the Q subspace
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and embedded in the P subspace. The eigenstates of Heff have, in general, a finite lifetime due
to their decay into the P subspace.

The eigenvalues and eigenfunctions of HB contain the interaction u of the discrete states
which is given by the nondiagonal matrix elements of HB . This interaction is characteristic
of the corresponding closed system and may be called therefore internal interaction. The
eigenvalues and eigenfunctions of Heff contain additionally the interaction v of the resonance
states via the common continuum (v is used here instead of the concrete matrix elements of the
second term of Heff). This part of interaction is, formally, of second order and may be called
external interaction. While u and Re(v) cause level repulsion in energy and influence the
widths only marginally, Im(v) is responsible for the bifurcation of the widths of the resonance
states and level clustering in energy. The bifurcation of the widths causes the formation of
a few short-lived resonance states together with long-lived narrow ones (resonance trapping)
[11]. This phenomenon has been proven experimentally in a microwave cavity [27].

Since the effective Hamilton operator (2) depends explicitly on the energy E,Heff =
Heff(E), so do its eigenvalues zλ and eigenfunctions φλ. Far from thresholds, the energy
dependence is weak within an energy interval of the order of magnitude of the width of the
resonance state. It should be underlined here that the FPO formalism allows us to describe
the open quantum system also in the regime of strongly overlapping resonance states and
that the S matrix is always unitary. The energy dependence of the coupling coefficients
calculated by means of φλ, is a direct consequence of the unitarity condition, see e.g. [28].

The solutions of the fixed-point equations Eλ = Re(zλ)|E=Eλ
and of �λ = −2 Im(zλ)|E=Eλ

are numbers that coincide (approximately) with the poles of the S matrix. Using the FPO
formalism with non-Hermitian Hamilton operator Heff , it is however not necessary to look
for the poles of the S matrix since the spectroscopic information is directly given by the
complex eigenvalues zλ of Heff . In the S matrix, the eigenvalues zλ with their full energy
dependence appear. Due to this fact, the S matrix contains information on the environment of
the considered resonance states such as the position of decay thresholds and resonance states
overlapped by them.

Thus, the FPO formalism may be considered as an extension [29] of the R matrix theory
used in standard quantum mechanics for the description of decaying states. The standard
spectroscopic parameters (positions, widths and partial widths of the resonance states λ) are
replaced by the energy-dependent functions Eλ, �λ and coupling matrix elements between
system and environment that are calculated by means of the eigenfunctions φλ of Heff . While
R matrix theory gives reasonable results only for narrow non-overlapping resonance states,
the FPO formalism can be used for all resonance states including the short-lived ones in the
overlapping regime. The influence of neighboring resonances as well as of decay thresholds
is taken into account via the energy dependence of the eigenvalues zλ and eigenfunctions
φλ. In many systems, the spectroscopic properties can be controlled by means of an external
parameter. The results obtained in the FPO formalism pass into those of the R matrix theory
in the regime of non-overlapping resonance states.

2.2. Phase rigidity rλ of the eigenfunctions φλ of the non-Hermitian Hamilton operator Heff

The eigenfunctions φλ of the non-Hermitian symmetrical Hamilton operator Heff are complex
and biorthogonal, i.e. the left and right eigenvectors differ from one another. Due to the
symmetry of Heff , it is

〈
φleft

λ

∣∣ = 〈
φ

right∗
λ

∣∣ ≡ 〈
φ∗

λ

∣∣. In contrast to 〈φλ|φλ〉, the value 〈φ∗
λ|φλ〉 is

complex. Nevertheless, it can be used to normalize the biorthogonal wavefunctions [11, 30].
Choosing the orthonormality conditions as

〈φ∗
λ|φλ′ 〉 = δλ,λ′ (4)
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the transition is smooth from the wavefunctions of an open quantum system (with, in general,
nonvanishing decay widths �λ of its states and biorthogonal wavefunctions φλ) to those of
the corresponding closed one (with �λ → 0 and real wavefunctions that are normalized in
the standard manner). That means 〈φ∗

λ|φλ〉 → 〈φλ|φλ〉 = 1 if the coupling vectors in the
non-Hermitian part of (2) vanish. As a consequence [11, 31]

〈φλ|φλ〉 ≡ Aλ � 1 (5)

Bλ′
λ ≡ 〈φλ|φλ′ �=λ〉 = −Bλ

λ′ ≡ −〈φλ′ �=λ|φλ〉∣∣Bλ′
λ

∣∣ � 0.
(6)

The normalization condition (4) entails that the phases of the eigenfunctions in the overlapping
regime are not rigid: the normalization condition 〈φ∗

λ|φλ〉 = 1 is fulfilled only when

Im 〈φ∗
λ|φλ〉 = 0. (7)

Since φλ and, as a consequence, also the value Im〈φ∗
λ|φλ〉 depends on parameters, the condition

(7) corresponds generally to a rotation of the eigenvector by a certain angle βλ (phase change
of the wavefunction by βλ) when the parameters are varied.

Let us fix the phases of the wavefunctions of the original states corresponding to v = 0
(vanishing non-diagonal matrix elements of the second term of (2)) to β0

λ = 0 or ±π , so
that Imφ0

λ = 0. The influence of a neighboring state is described by v �= 0 (i.e. by the non-
diagonal matrix elements of the second term of (2)). At v �= 0, the angle βλ is different from β0

λ ,
generally. The difference

∣∣βλ − β0
λ

∣∣ may be ±π/4 at most, corresponding to Reφλ = ±Im φλ

(as compared to Imφ0
R = 0). This maximum value occurs at an exceptional point where two

eigenvalues zλ, zλ′ of Heff coalesce. Here [11, 12, 13, 30, 32]

φλ → ±iφλ′ ; φλ′ → ∓iφλ. (8)

This relation between the two wavefunctions at the exceptional point has been found also in
numerical studies on a realistic system (laser-induced continuum structures in atoms [9]).

The phase rigidity defined by

rλ = 〈φ∗
λ|φλ〉

〈φλ|φλ〉 = 1

(Re φλ)2 + (Im φλ)2
= 1

Aλ

(9)

is a useful measure [15, 33] for the rotation angle βλ. When the resonance states are distant
from one another, it is rλ ≈ 1 due to 〈φλ|φλ〉 ≈ 〈φ∗

λ|φλ〉. In approaching an exceptional point
in the complex energy plane [11, 13], we have 〈φλ|φλ〉 ≡ Aλ → ∞ and rλ → 0. Therefore
1 � rλ � 0.

It should be underlined that, after defining the normalization condition (4), the values
rλ are fixed by the coupling matrix elements v of Heff which determine the degree of
overlapping of the resonance states. They can be varied by controlling the system by means
of external parameters, e.g. by means of a laser in the case of an atom with many levels
(for concrete examples see [8, 9]). The rotation angle βλ as well as the values Aλ and rλ

may be considered to be a synonym for the biorthogonality of the eigenfunctions φλ of the
non-Hermitian Hamiltonian (2). They are measures for the distance of the considered states
from an exceptional point in the complex plane and for the spectroscopic reordering processes
occurring in an open quantum system with overlapping resonance states under the influence
of the coupling to the continuum. Physically, the phase rigidity rλ measures the degree of
alignment of one of the overlapping resonance states with one of the scattering states ξE

C of
the environment. This alignment takes place at the cost of the other states that decouple, to a
certain extent, from the environment (widths bifurcation or resonance trapping occurring in
the neighborhood of an exceptional point [11]). For the same parameter set, the values rλ are,
generally, different for the different states λ.

5
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2.3. Eigenfunctions of Heff at and in the vicinity of an exceptional point

An exceptional point is defined by the coalescence of (at least) two eigenvalues: z0
λ ≡ zλ = zλ′

where zλ = Eλ − i/2�λ. According to section 2.2, the mathematical consequences for the
eigenfunctions φ0

λ ≡ φλ at an exceptional point are the following.

(i) The eigenfunctions φ0
λ and φ0

λ′ are linearly dependent according (4) to (8) with Aλ → ∞
and

∣∣Bλ′
λ

∣∣ → ∞,
(ii) The phase rigidity is zero, rλ = 0 according to (8), i.e. Re(φλ) = Im(φλ),

(iii) The phases of the eigenfunctions are ill defined due to the jump by π/4 at the exceptional
point (see [13, 30] for details).

Furthermore, the eigenvectors φ0
λ and φ∗0

λ are supplemented by the corresponding
associated vectors defined by Jordan chain relations, see equation (13) in [30]. The
wavefunction at the exceptional point is chiral-like since it can be represented by φλ ± iaφλ′

with real a according to (8). Only for a = 1 (neglecting the phase jump), the wavefunction
can be considered to be chiral.

Relations (i)–(iii) hold strictly only at the exceptional point, i.e. at a single point
in the complex parameter plane. However, the exceptional points influence strongly the
neighborhood where the resonance states overlap in energy due to their finite decay widths.
Here,

(i) Aλ > 1 (but finite) and
∣∣Bλ′

λ

∣∣ �= 0,
(ii) the phase rigidity is reduced, 0 < rλ < 1,

(iii) the height of the phase jump is π/4 and takes the form of a Heaviside step function (see
equation (49) in [30]).

Due to these relations, the exceptional points strongly influence the physical properties of
open quantum systems in the regime of overlapping resonances, i.e. in a large parameter range.
They separate the regime of level repulsion (and small influence on the widths) from that of
widths bifurcation (accompanied by level clustering). For details see [11, 28, 32]. Numerical
results for realistic systems are considered in section 5.

3. Geometric phases of diabolic and exceptional points

3.1. Geometric phase in the function space of discrete states (Berry phase)

Since the pioneering papers [34, 35], the Berry phase is understood to be inherent in quantum
mechanics. It is directly related to the function space used in the description of closed
quantum mechanical systems with discrete eigenvalues. The interaction u between the states
is of standard first-order type.

For nonvanishing u, two eigenvalue trajectories of the (Hermitian) Hamilton operator
do not cross. This follows from the eigenvalue equation for a Hermitian Hamilton operator
(which is equivalent to (11) but with real energies εk and real non-vanishing interaction u ≡ ω)
since Z2 + 1 �= 0 in this case. In the function space of discrete states, avoided level crossings
appear at certain critical values of the parameter considered. These points are usually called
diabolic points. The Berry phase characterizes the topological structure of a diabolic point.

3.2. Geometric phase in the extended function space

The geometric phase of eigenvectors of non-Hermitian complex symmetric operators has
been considered recently in different papers for paths in parameter space that encircle an
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exceptional point. As a result, the geometric phase differs from the Berry phase. This
difference is not caused by the fact that the system might pass through an exceptional point
by varying parameters while it is impossible to pass the diabolic point. The singular point is
encircled in a certain distance, in any case.

In [6], Gamow states are considered. In these studies, an additional part to the Berry phase
arises which vanishes with vanishing coupling to the continuum, i.e. when the Gamow states
pass into discrete states. This result is related to the fact that, in these studies, the interaction
of the Gamow states via a common continuum is not contained. In other papers [13, 16, 17,
30, 36], the interaction of the resonance states via a common continuum is taken into account.
Due to this interaction, the resulting geometric phase differs from that obtained in [6], and the
limiting case of vanishing coupling to the continuum is not trivial. As a result, a cycle around
the exceptional point has to be passed four times in order to produce one full 2π circle in the
geometric phase. That means, the exceptional point has to be encircled two times more than
a diabolic point in order to restore the wavefunction including its phase.

Supposing that for an N-level system the influence of the other N − 2 levels onto the
two crossing ones is sufficiently weak at the exceptional point, the setup for studying the
geometric phase can be modeled by an effective complex symmetric non-Hermitian (2 × 2)

matrix Hamiltonian

H =
(

e1 ω

ω e2

)
, H = HT . (10)

The complex energies e1,2 and the complex channel coupling ω are, in general, parameter
dependent. The eigenvalues ε± and eigenfunctions �± of H are [30]

ε± = ε0 ± ω
√

Z2 + 1 (11)

and

�± =
(

1

−Z ±
√

Z2 + 1

)
c±, (12)

where

ε0 = 1

2
(e1 + e2), Z = e1 − e2

2ω
(13)

and c± �= 0 is complex. The eigenfunctions are biorthogonal according to (4) with (5) and
(6). According to (11), it is Z = ±i at the exceptional point and, consequently [30, 31],

�± =
(

1
−i

)
c± or �± =

(
1
i

)
c± (14)

with |c±| → ∞. Further [30] c+/c− → ±i and �+/�− = ±i (in agreement with (8)).
In order to receive the geometric phase, the cycle around the exceptional point can be

parameterized by r eiα with 0 � α � 2π and 0 < r � 1. Then, the evolution along a cycle is
given by the transformation matrix W(α) = �(α)/�(0). It follows [30]

W(α)�(0) = e−iα/4�(0). (15)

This result shows the typical fourfold winding around the exceptional point. For illustration,
this result can be represented in the following manner according to (8):

1. cycle : ε± → ε∓ �± → ±i�∓
2. cycle : ε∓ → ε± ± i�∓ → −�±
3. cycle : ε± → ε∓ − �± → ∓i�∓
4. cycle : ε∓ → ε± ∓ i�∓ → �±. (16)

7
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The geometric phase of the exceptional point is half of the geometric phase (Berry phase)
of a diabolic point. In the last case, the Hamiltonian HB of the system is of standard type
for discrete quantum mechanical states. It contains only the internal interaction u. In the first
case, however, the Hamiltonian is Heff which contains, additionally to HB , a second-order term
arising from the coupling to the continuum (external interaction v). At the exceptional point,
this second-order term becomes the leading term. The difference between the geometric phases
in the two cases with HB and Heff , respectively, illustrates the importance of the interaction
via the continuum when the quantum system is open.

3.3. Measurement of geometric phases using microwave resonators

More than ten years ago, the geometric phases of real wavefunctions in nonintegrable quantum
billiards are measured by using microwave resonators [22]. The results showed the Berry
phase. The cyclic excursion around the diabolic point is achieved by means of parameters
that control the shape of the resonator. The geometric phases appear as a sign change of
the wavefunction after one cycle. According to expectations it builds up whenever a double
degeneracy is encompassed. However, also triple degeneracies lead to a sign change. This
last observation caused theoretical studies aiming to explain the data, e.g. [37]. Obviously, an
additional mirror symmetry comes into play in triple degeneracies.

Also the topological structure of an exceptional point has been studied in a microwave
cavity experiment [19, 20, 38]. To get access to and encircle an exceptional point in the
experiment, an absorptive system is used. It consists of two semicircular cavities of slightly
different sizes which can be coupled by adjusting the opening of a slit between them. The
second parameter is given by the distance between the centers of the cavity and a teflon
semicircle placed on one side of the cavity. In the experiment, the real and imaginary parts
of the eigenvalues and eigenvectors of the non-Hermitian Hamilton operator Heff are traced
on a closed path around the exceptional point. Along this path the complex eigenvalues are
interchanged, but their trajectories never cross each other (i.e. avoid crossing in the complex
energy plane). The experimental results [19] confirm the expectations: a cycle around the
exceptional point in parameter space has to be passed four times in order to produce one full
2π cycle in the geometric phase.

In a next experiment, the authors studied the phase difference between the two eigenvectors
in approaching the exceptional point [38]. As a result, the phase difference between the two
modes changes from π at large distance between them to π/2 in approaching the exceptional
point. This result has been explained in [38] by the assumption that the state at the exceptional
point is a chiral state.

The experimental results [38] can be explained also by means of the phase rigidity rλ of
the complex eigenfunctions φλ of the non-Hermitian Hamilton operator Heff [33]. The phase
rigidity drops smoothly from its maximum value r± = 1 far from the exceptional point (with
the phase difference π (or 2π ) between the wavefunctions of isolated resonance states) to its
minimum value r± = 0 at the exceptional point (with the phase difference ±π/2 according
to (8)). This interpretation explains, in a natural manner, the experimentally observed smooth
reduction of the phase difference in a comparably large parameter range. Further, the phase
jump by π/4 occurring in passing the exceptional point [13, 30], is directly related to the fact
that this point has to be encircled four times in order to restore the wavefunction including its
phase. It corresponds therefore to the geometric phase of this point that is measured in [19].
In this manner, the experimental results can be considered to demonstrate the (parametric)
dynamics of open quantum systems which is generated by the interaction of resonance states
via the continuum.

8



J. Phys. A: Math. Theor. 41 (2008) 244018 M Müller and I Rotter

4. Phase transition in an open quantum system

4.1. Schematic model

Let us consider first a simple model with the following restrictions. The effective Hamilton
operator is approximated by

H̃ = H̃0 − iαV V +, (17)

where V V + is a Hermitian operator. The first term H̃0 describes the internal structure of
the unperturbed system in the Q subspace while the second term describes the coupling
between the two subspaces in a simplified manner with the parameter α characterizing
the mean coupling strength between discrete and continuum states. Further restrictions are
the following: (i) H̃0 is supposed to be diagonal, i.e. H̃ is written in the eigenbasis of H̃0,
(ii) the number M of resonance states is large, (iii) the number K of open decay channels is
small, and (iv) the energy dependence of the eigenvalues and eigenfunctions of the effective
Hamiltonian is weak, in spite of the large number M of states, and therefore neglected. The
rank of H̃0 is equal to the number M of states considered. The coupling matrix V is a K × M

matrix and the matrix element V c
k describes the coupling of the discrete state k to the channel

c; k = 1, . . . , M; c = 1, . . . , K . Thus, the rank of V V + is K.
Let us first consider the case with real α. If |α| is small, the second term in (17) can be

regarded as a small perturbation. In this case, H̃ has M almost real eigenvalues. If, however,
|α|  1, the first term H̃0 appears as a small perturbation and the matrix V V + provides K
eigenvalues. Therefore, H̃ has K eigenvalues with large imaginary part. In between these
two limiting cases, a transition occurs between both regimes. Crucial for this transition is the
distribution of the exceptional points in the complex energy plane which is exclusively fixed
by the distribution of the matrix elements of H̃0 and V V +.

In [17, 21], the model (17) has been used in order to investigate if and under which
conditions this transition can be understood as a phase transition. The study is performed
with K = 1 meaning that finally one short-lived mode is formed after M − 1 avoided or true
crossings with M −1 resonance states. Thus, M −1 exceptional points are expected to appear.
It is shown analytically [21] that, in the limit M → ∞, a simultaneous coalescence of all
eigenvalues occurs at a finite real value of α, if the distribution of the real eigenvalues Ẽk of
H̃0 and the coupling matrix elements vk (i.e. the elements of the vector V ) are appropriately
chosen. In that case, all M − 1 exceptional points accumulate at one single point in the
complex parameter plane. The most illustrative case is a picket-fence model with equal
distance between the states and equal coupling strength of all the states to the continuum,
v ≡ vk for all k. More generally, an appropriate condition can be achieved when regions with
a smaller level density of the unperturbed states are stronger coupled to the decay channel
than those with a higher level density. For example for the level distribution Ẽ2

k ≈ xt and
the coupling strength v2

k ≈ xr , such a situation appears [21] when 2(r + 1) = t . Here,
αcr = (r + 1)/π = t/(2π). For the picket-fence model, it is t = 2, r = 0 and αcr = 1/π .

If 2(r + 1) > t, αcr → 0 in the limit M → ∞. That means, there exists a state with
large decay width at any finite value α > 0. If however 2(r + 1) < t , it follows αcr → ∞,
i.e. the reorganization process occurs always locally and does not finish for any finite arbitrary
high value α. In this case also an eigenvalue with large imaginary part appears, but now via a
successive but infinite chain of level repulsions.

Although mathematically the limit M → ∞ is required for the simultaneous coalescence
of all eigenvalues, the evolution of the system traced by varying α along the real axis
resembles nicely all features of a second-order phase transition even for M = 102 states
(when 2(r + 1) = t) [21]. Here the coupling strength α acts as a control parameter while the

9



J. Phys. A: Math. Theor. 41 (2008) 244018 M Müller and I Rotter

imaginary part of the large eigenvalue plays the role of an order parameter [21]. Furthermore,
it could be shown that the relation between the distribution of unperturbed states and the
coupling strength, i.e. between r and t, has to be fulfilled only approximately. If either the
level density of H̃0 or the coupling matrix V V + (or both) are additionally altered by noisy
perturbations, an abrupt transition occurs at αcr numerically even when only a comparably
small configuration space is considered [21]. Under the condition 2(r + 1) ≈ t , all exceptional
points of the system accumulate at some finite real value of the parameter α = αcr (see figure 2
of [17]). In the limit M → ∞ a perfect coalescence of an infinite number of exceptional
points is succeeded.

It is interesting to remark that, in the case of a phase transition, the short-lived eigenstate
λ0 is collective in the sense that the number of principal components of its eigenfunction
jumps abruptly to its maximal value at the critical value αcr, i.e. its wavefunction consists of
a (constructive) superposition of all eigenstates of H̃0. The wavefunctions of all the other
M − 1 eigenstates of H̃, however, stay almost pure in this basis. In this sense, the short-lived
eigenmode with a large imaginary part �0/2 of its eigenvalue is an extremely collective state.
This is true, although �0 is much smaller than the extension of the spectrum at α = αcr.

As a conclusion, the results obtained analytically and numerically on the basis of the
schematic non-Hermitian Hamilton operator H̃, equation (17), with real values of the parameter
α showed the appearance of a second-order phase transition3. In the transition from the low
coupling regime to the high one a collective mode occurs suddenly in one point of the
parameter space. This point is the accumulation point of exceptional points in the function
space considered.

4.2. Realistic models

A more realistic situation is obtained when the coupling parameter is chosen to be complex,
i.e. α → α eiϕ is considered in (17). In this case, the system can no longer evolve through the
accumulation point of the exceptional points [21]. The reason is that the accumulation point of
the exceptional points is at the real α-axis. The system can therefore not hit the accumulation
point, but has to pass it at a certain distance in the complex parameter space. Hence, the
reorganization process is washed out. That means, a critical region of reorganization of the
system can be observed as a function of α, but a strict phase transition cannot occur when α

is complex [21].
Such a situation is studied numerically in a realistic model for an open microwave cavity

with the full Hamiltonian Heff , equation (2) [15]. Here, the transmission through quantum
dots of different shape is calculated as a function of the coupling strength to the attached leads.
In these calculations, the number of states in the considered energy region is finite and the
transition between two different scenarios (‘phase transition’) is spread over a comparably
large range of the parameter varied. It occurs from a scenario with isolated resonances to
another one with narrow resonances superposed by a background. In the transition region, the
density of exceptional points is high and the resulting resonance trapping phenomenon occurs
hierarchically in a certain finite parameter range.

The most interesting result of these calculations is that the transmission through the
system is enhanced in the whole parameter range with densely lying exceptional points. The
enhancement is a consequence of the fact that the phase rigidity of the eigenfunctions of
Heff is reduced in the regime with overlapping resonances [15, 33]. Of special interest is the
appearance of whispering gallery modes along the convex boundary of a cavity.

3 Our considerations hold at zero temperature.
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As a conclusion, the physically interesting phenomenon of enhanced transmission through
the system in a certain finite parameter interval is a consequence of the interplay between the
Hermitian and non-Hermitian parts of Heff . It prevents an accumulation of the exceptional
points in one point, and the transition between the different scenarios takes place hierarchically
in a finite range of the parameter value. With the approximation

Re(Heff − HB) = Re

(∑
C

VBC

1

E+ − HC

VCB

)
= 0 (18)

and in the limit of large N, the parameter range with enhanced transmission shrinks to one
point as discussed in section 4.1.

5. Examples studied numerically in the framework of realistic models

5.1. Level repulsion and widths bifurcation

According to the eigenvalue equation (11), level repulsion is related to Re(ω
√

Z2 + 1) while
widths bifurcation is determined by Im(ω

√
Z2 + 1). The exceptional point is well defined

by Z2 + 1 = 0, i.e. by Z = ±i. By varying only one parameter, this point in the
continuum is seldom passed. Mostly the levels avoid crossing in the complex energy plane
at some value of the control parameter α. The regime of level repulsion and that of widths
bifurcation therefore do not finish and start, respectively, at the same point of α. Nevertheless,
regions with predominant level repulsion are well separated in parameter space from those
with predominant widths bifurcation (and level clustering). For some illustrative examples
see [11].

Numerical calculations for different realistic models in the framework of the FPO method
have supported this general picture, see [8, 9] for atoms in a laser field and for quantum billiards
with one [39] or two attached leads [12, 13, 15]. The widths bifurcation has been seen even
experimentally in tracing the eigenvalue trajectories in a quantum billiard as a function of the
coupling strength between cavity and attached lead [27]. Similar results are obtained in many
other calculations performed in the framework of other models. As an example, we refer here
only to the results presented in [6].

Level repulsion has been discussed in many papers for many years, especially in relation to
quantum chaos. Since it is related to Re(ω

√
Z2 + 1) (according to the eigenvalue equation (11))

it appears also in closed systems. For details see, e.g., the textbooks [40, 41].
The scenario in open quantum systems is much richer. Here, the effects arising from

Im(ω
√

Z2 + 1) �= 0 appear, i.e. from the bifurcation of the decay widths traced as a function
of a certain control parameter α. An interesting phenomenon that is directly related to avoided
level crossings and is of importance for applications, is high-order harmonic generation
occurring in driven two-level atoms [42]. Another phenomenon is the appearance of bound
states in the continuum, i.e. of states whose widths vanish although their position in energy is
above the decay threshold and their decay is not forbidden by any selection rule. The relation
of this phenomenon to avoided level crossings in the continuum has been first discussed
in [43] for atoms. Due to the interplay between the Hermitian and non-Hermitian parts of
the Hamilton operator Heff in realistic models, bound states in the continuum occur also for
realistic (finite) parameter values [8, 9]. In atomic physics, this phenomenon is known as
population trapping studied first in a time-dependent formalism [44]. The bound states in the
continuum appear, in this description, as resonance states the population probability of which
is time independent.
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Bound states in the continuum have been found and related to the avoided level crossing
phenomenon also in open quantum dots [12, 14, 45]. Here, they cause zeros in the transmission
probability. More detailed results can be found in [46].

5.2. Phase rigidity of the wavefunctions and enhancement of observables

The eigenfunctions of Heff in the vicinity of exceptional points are much less studied than the
eigenvalues. From (12) follows (8) at the exceptional point as shown in, e.g., [30, 32]. In
other approaches, e.g. [17, 19, 20, 38], the relation φk → φl;φl → −φk is used instead of
φk → ±iφl , equation (8).

In recent studies, the phase rigidity of the eigenfunctions of Heff is shown to be reduced
in approaching an exceptional point [33]. This result agrees with experimental results [38]
obtained in approaching an exceptional point in a microwave cavity (section 3.3).

An interesting effect caused by the reduced phase rigidity of the wavefunctions in the
regime of overlapping resonances is the enhancement of observable values as, e.g., of the
transmission probability through a quantum dot [15]. An enhancement occurs by hierarchical
resonance trapping at true and avoided level crossings in the complex energy plane. It is
directly related to the fact that the system passes through a region with a high density of
exceptional points [33]. Finally, two short-lived collective states are formed which are aligned
each to one of the two channel wavefunctions. As a function of a parameter that characterizes
the degree of opening of the system, the transmission occurs via N single resonances in the
scenario at low opening and via N − 2 narrow resonances superposed by a background in the
scenario at strong opening. The transition between the two scenarios takes place in the regime
in which the resonance states strongly overlap and the rigidity of their phases is reduced [15].

The best illustrative case is a cavity with a convex boundary where whispering gallery
modes appear [15, 47]. The transmission through these modes is enhanced. It occurs in
the short-time scale as a shot-noise analysis has shown [48]. The transmission in the regime
of overlapping resonances does not show single resonance peaks but is plateau-like [15, 47]
being a typical feature of the reduced phase rigidity of the wavefunctions.

5.3. Topological structure of exceptional points

In analytical and numerical calculations for quantum dots, the topological structure of
exceptional and diabolic points is studied [13]. The results show that both types of singular
points differ substantially from one another: (i) the encircling of a diabolic point gives rise
to a geometric phase in the closed system (Berry phase), and does not cause any phase in the
open system, (ii) the encircling of the exceptional point gives rise to a geometric phase in the
open system but has no effect in the closed system. This result follows from the different
Hamilton operators in the two cases. In the first case, Heff (equation (2)) reduces to HB being
the standard Hermitian Hamilton operator of the closed system. In the second case, however,
the most important part of Heff is the non-Hermitian interaction part via the continuum being
formally a second-order term. The corresponding phase is half of the Berry phase.

The results obtained for the exceptional points in quantum dots agree with those obtained
analytically [30] for the general case. They agree also with the results obtained experimentally
on microwave resonators [19, 20].

5.4. Crossing points of three and more eigenvalues

The wavefunctions at crossing points of the eigenvalues of three resonance states are studied
for a quantum dot with a small number of resonance states [13]. In this special case, the
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triple exceptional point turns to a double exceptional point since the third eigenvalue remains
unaffected by the crossing. This behavior is caused, surely, by some symmetry involved in
the system. It is not in contradiction with the general conclusion that the real part of the
non-Hermitian part of Heff prevents the system to cross the accumulation point of exceptional
points (section 4.2).

More theoretical and experimental studies have to be performed in order to find an answer
whether or not non-contractible multiple exceptional points exist in realistic systems.

6. Conclusions

In this paper, we reviewed the role exceptional points play in the dynamics of open quantum
systems. The spectroscopic properties of an open quantum system are well described by the
eigenvalues and eigenfunctions of the non-Hermitian Hamilton operator Heff (equation (2)).
The eigenvalue trajectories traced in the complex plane as a function of a parameter, may cross
or avoid crossing in the complex energy plane. The geometric phase of an exceptional point
(or an avoided level crossing) differs from the Berry phase. The reason for this difference is
the different function space basic for the description of the two different situations (open and
closed quantum systems, respectively). It may be considered as a signature of the additional
correlations induced in an open quantum system by the coupling to the common continuum.
In physical systems, the exceptional points separate the scenario with level repulsion from that
with widths bifurcation (and level clustering). Widths bifurcation may lead to the interesting
phenomenon of population trapping, i.e. to the appearance of bound states in the continuum
(meaning some stabilization of the system at certain parameter values).

In this paper, we concentrated on the wavefunctions of the system being eigenfunctions of
the non-Hermitian Hamilton operator Heff , equation (2). They contain correlations caused by
the standard internal interaction as well as by the external interaction of the resonance states
via the common continuum. The phases of the eigenfunctions of Heff depend on the degree
of overlapping of resonances. The phase rigidity is reduced in the vicinity of an exceptional
point and allows, in this manner, an alignment of a few wavefunctions of the system each with
one of the (channel) wavefunctions of the environment. This process is basic for the dynamics
of open quantum systems.

Although exceptional points are single points in the complex plane, they determine
decisively the dynamics of open quantum systems. In spite of many studies, some problems
are still unsolved.

(i) The experimental data received in approaching the exceptional point in a microwave
cavity are interpreted by the authors as observation of a chiral state [38] in spite of the fact
that the exceptional point is a single point in the continuum. An alternative explanation of
the data considers the reduction of the phase rigidity in approaching an exceptional point
(section 3.3). The advantage of the last interpretation is the fact that the phase rigidity is
reduced not only at the exceptional point. The reduction can be traced in a large parameter
range in approaching the exceptional point (in agreement with the experimental results).
It would be interesting to also look for the phase jump appearing at the exceptional point
(section 2.3).

(ii) The transmission through a microwave cavity is enhanced in approaching the critical
value of the coupling strength between system and attached leads, i.e. the critical value of
the degree of opening of the system. Here, the transition from the transmission scenario
via single resonance states to that via resonance states superposed by a background takes
place in a region with high density of exceptional points (section 4.2). In this region, the
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phase rigidity of the wavefunctions is reduced. Finally, a new decay channel opens. The
relation between such a ‘phase transition’ and the position of a threshold for opening a
new decay channel needs further investigation.

(iii) The question whether or not true multiple exceptional points exist is unclear. Theoretical
studies on a realistic system do not support a true accumulation of exceptional points
(section 4.2). However, they do not clearly exclude an accumulation of a few of them,
i.e. the existence of true multiple exceptional points. Further studies of triple exceptional
points will surely give a contribution to the solution of this problem. Additionally,
they will throw light on the relation to the Berry phase and the appearance of internal
symmetries (section 3.3).

A solution of these problems will give invaluable contributions to a better understanding
of the dynamics of open quantum systems.
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[3] Feshbach H 1958 Ann. Phys., NY 5 357

Feshbach H 1962 Ann. Phys., NY 19 287
[4] Rotter I 2007 Preprint 0711.2926
[5] Newton R G 1982 Scattering Theory of Waves and Particles (New York: Springer)
[6] Mondragon A and Hernandez E 1993 J. Phys. A: Math. Gen. 26 5595

Hernandez E and Mondragon A 1994 Phys. Lett. B 326 1
Hernandez E, Jauregui A and Mondragon A 2003 Phys. Rev. A 67 022721
Hernandez E, Jauregui A and Mondragon A 2005 Phys. Rev. E 72 026221

[7] Vanroose W, VanLeuven P, Arickx F and Broeckhove J 1997 J. Phys. A: Math. Gen. 30 5543
Vanroose W 2001 Phys. Rev. A 64 062708

[8] Magunov A I, Rotter I and Strakhova S I 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1669
[9] Magunov A I, Rotter I and Strakhova S I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 29

[10] Solov’ev E A 1981 Sov. Phys.—JETP 54 893
Solov’ev E A 1989 Sov. Phys. Usp. 32 228
Briggs J S, Savichev V I and Solov’ev E A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3363
Solov’ev E A 2005 J. Phys. B: At. Mol. Opt. Phys. 38 R153

[11] Rotter I 1991 Rep. Prog. Phys. 54 635
Okolowicz J, Ploszajczak M and Rotter I 2003 Phys. Rep. 374 271

[12] Rotter I and Sadreev A F 2004 Phys. Rev. E 69 066201
[13] Rotter I and Sadreev A F 2005 Phys. Rev. E 71 036227
[14] Rotter I and Sadreev A F 2005 Phys. Rev. E 71 046204
[15] Bulgakov E N, Rotter I and Sadreev A F 2006 Phys. Rev. E 74 056204

Bulgakov E N, Rotter I and Sadreev A F 2007 Phys. Rev. B 76 214302
[16] Cartarius H, Main J and Wunner G 2007 Phys. Rev. Lett. 99 173003
[17] Heiss W D, Müller M and Rotter I 1998 Phys. Rev. E 58 2894
[18] Heiss W D 1999 Eur. Phys. J. D 7 1
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